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ABSTRACT 

We investigated the possibility of preserving a preset plane flying formation through geodesic (free) 
motion around an attractive centre. After a series of approximations, we obtained a first order solution for 
this problem (the small parameter of the approximation series is set by the characteristic length of the 
formation and by an eccentricity-like factor, which is related to the trajectory of the geometrical centre of 
the formation). Such a solution consists in a collection of Keplerian solutions with the same period. The 
free movement of these bodies creates the impression of a united motion (like in a rigid body motion), at 
least in the first order of approximation. The instantaneous plane described by the formation experience a 
precessional motion with respect to a fixed direction, in the same way we know from the kinematics of the 
LISA mission. We calculated the relative errors for a regular hexagonal formation, for different side 
lengths, for one period of time. 

1.0 INTRODUCTION 

In the last decades, a powerful concept has entered in the domain of space exploration, the multi-module 
mission: several modules working together in order to achieve the purposes of the mission. Although this 
type of mission has been used from the early times of the space era (we mention the Moon-landing 
missions of the Apollo program - there were two modules, one acting as a station orbiting the Moon, and 
the second, doing some complicated manoeuvres to and from the Moon surface, also the ESA CLUSTER 
mission, which involved four identical spacecraft flying in a tetrahedral formation), the true force of this 
idea was revealed by the development of the global positioning systems and by the constellations of 
telecommunication satellites. In a multi-modular mission the tasks are distributed and some activities are 
made in parallel, in order to increase the fiability and the security of the mission. A perfect example of 
using multi-modular architecture is given by the LISA mission project, where the geometry of the 
trajectories will play an essential role in reaching the goals: actual measurement of gravitational waves. 
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In fact, there is nothing really new about this concept, but rather a rediscovery of a good, classical one; for  
thousand of years the human civilization was defined by missions and expeditions, made by groups of sea-
ships or aircrafts...  

Formation flying can be regarded as a particular type of multi-modular space mission. The specific 
elements are: 

I.1. The mutual distances between modules are small or very small with respect to the length of 
the trajectory path or to the orbital characteristic length; 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

I.2. The relative geometry is chosen to fulfil some conditions and some of its characteristics are 
preserved during the motion; 

I.3. We can ignore both the mutual gravitational interactions and their influence on the 
gravitational sources (i.e. we are able to separate the group movement problem into a collection 
of restricted one-body problems); 

We have an important number of specific problems: 

The problem of choosing the optimal geometry for the particular needs of the mission; 

The problem of orbital/trajectory design; 

The problem of launching (getting into the desired orbit/trajectory); 

The problem of adapting the solution to the technologic resources and budget restrictions; 

The management of the tasks distribution over the modules; 

The problem of communication in between the modules and with the flight coordinating centre; 

The problem of orbital correction and mutual geometry correction; 

etc. 

It is clear that the flying formations are the perfect field for using and improving the WIRELESS and 
GRID technologies. But, in the sequel of this paper, we will be interested only in the mechanical aspects 
of the flight. More precisely, we will investigate the possibility of preserving an arbitrary plane flying 
formation, without propulsion, in Keplerian hypothesis (i.e. a restricted N + 1 bodies problem: N modules 
and an attractive centre). 

2.0 MATHEMATICAL MODEL 

Let us consider an attractive centre of mass M and a family of N test bodies (Pi)i=1,N, with masses (mi)i=1,N. 
Also, let’s assume the above mentioned hypothesis I.3, which can be written 

(1)     ( ) NiMmi ,1, =∀<<  

The problem decouples in N classic Keplerian [4], 

(2)    ( ) NiOP
OPdt

OPd
i

i

ii ,1,32

2

=∀−=
µ  

where  ( ) ( ) NiMkmMk ii ,1,:: 22 =∀=≈+= µµ
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Problem statement: Can we configure a plane arbitrary N-body flying formation (see Figure 1), such 
that its geometry stays unchanged in the instantaneous mutual plane? 

 

Figure1: The two referential systems: OXYZ, centred in the gravitational source and inertial, and 
the noninertial CXCYCZC, with C as the geometrical centre of the formation. We can consider that 

the bodies are in the fundamental plane CXCYC in some fixed points Pi. 

We will be interested only in solutions with elliptic trajectories. Observe that in the point C (which is still 
ambiguous defined) we can place a massless (N+1)-th body. Using this observation, we can set the relation 
between the referential systems in the following way: 

(3)    ( ) ( )tKrtAr CC +⋅= , 

where 

r  is the position vector of an arbitrary point with respect to OXYZ, • 

Cr  is the position vector of the same point with respect to CXCYCZC, • 

A(t) is the instantaneous rotation matrix, • 

• ( )tK C  is a Keplerian (elliptic) motion for the virtual body C, which can be interpreted as a 
translation of the origin of the mobile referential system. 
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We reduced the initial problem to a simpler one: finding the instantaneous rotation matrix A(t). Taking 
into account (2) and (3) we obtain 

(4)  ( )CC

CC

CCC
C KrA

KrAdt
Kd

dt
rdA

dt
rd

dt
dAr

dt
Ad

+⋅
+⋅

−=+⋅+⋅+⋅ 32

2

2

2

2

2

2 µ . 

Let’s remind the hypothesis: Cr  = ct., CK  is a solution for the problem (2) and I.1 ( ( )1OKr CC =<< ). 

We have: 

(5)   ⎟
⎠
⎞

⎜
⎝
⎛+

⋅
+

⋅
−=⋅

2

532

2

3 CC

C

CC

C

C
C rOK

K

Kr

K

rAr
dt

Ad µµ  

Due to the mathematical complexity of the problem, we are forced to renounce to look for an exact 
solution and to consider a linear simplification. We must take the relation (5) as an equation in A, with a 
sufficiently small given Cr . The equation also has a restriction, as A must be a rotation: 

(6) ( )
( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( ) ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
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⎛ −
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⎠
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⎝

⎛ −
=

tftf
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tftf
tftf
tftf

tA

33

33

22

22

11

11

cossin0
sincos0

001

cos0sin
010

sin0cos

100
0cossin
0sincos

,  

where f1, f2, f3 are arbitrary functions of time. 

3.0 APPROXIMATE SOLUTIONS IN A CLOHESSY-WILTSHIRE-TYPE 
SYSTEM 

Despite the assumed approximation, the simplified problem (5)+(6) remains complicated for an analytical 
approach. For a further simplification let us introduce a CW (Clohessy-Wiltshire) referential system [1], 
[3]. Consider that the trajectory of C is an ellipse (semi-major axis a = 1 and eccentricity e), contained in 
the plane OXY, with O as one of the focuses and OX as the pericentre line (see Figure 2). 

Now, we can introduce the referential system CX1Y1Z1 through the relations: 

(7)    ( )fRrfAr +⋅= 1)( , 

where 

(8)       ,
100
0cossin
0sincos

)(
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
= ff

ff
fA ( ) ( ) ,

0
sin
cos

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= f

f
ffR ρ      ( )

fe
ef

cos1
1 2

+
−

=ρ  

and f = f(t) is the true anomaly of the fictitious motion of C. 
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We get 

(9)  
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where ( )21 eaG −= µ  is the (constant) value of the kinetic momentum. 

 

Figure 2: The Clohessy-Wiltshire-type referential system, CX1Y1Z1. 

Neglecting the second order terms, equation (9) reads: 
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Relations (10) take place if and only if F1 =  F2 = F3 = 0. 

And now, the announced simplification: 

(12)     ⎟
⎠
⎞

⎜
⎝
⎛=

2

1rOe .  

Consequently, we can approximate the CW orbit with a circular one by neglecting the O(e) terms. We 
obtain the following, explicitly integrable system:   

(13)    

⎪
⎪
⎪

⎩

⎪
⎪
⎪
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=+

=+

=−−

.0

,02

,032

1
2

2
1

2

1
1

2
1

2

1
21

2
1

2

zG
dt

zd
dt
dxG

dt
yd

xG
dt
dyG

dt
xd

 

4.0 OBTAINING AN ARBITRARY PLANE FLYING FORMATION  

We introduce now what we will call the LISA referential system [2]. Its origin is in C, and the plane 
CXLYL intersects the plane CX1Y1 along CY1, under an angle of 60o, rotating around the CZL axis with a 
constant angular speed G (see Figure 3). 

 

Figure 3: LISA referential system, CXLYLZL. 
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Observe that for each fixed point in the plane CXLYL there is a corresponding solution of (13). Indeed, if 
we take a fixed point in the fundamental LISA plane: uRxL cos= , uRyL sin= , zL = 0; in the CW 
system, this point will describe a circular trajectory, with the following kinematics: 

(14)    

( )
( )

( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−=

−−=

−−=

).cos(
2
3

),sin(

),cos(
2

01

01

01

GtuuRtz

GtuuRty

GtuuRtx

 

One can easily verify that the functions (14) fulfil the equations (13) and, so, they are approximations for 
some real motions. Of course, because of the approximations we made, we have the necessary condition R 
<< 1. It is convenient to consider that the trajectory of the fictitious body C lays in the OXY plane. In this 
way we can identify the Keplerian orbits approximated by (14). In terms of the orbital elements, the family 
of orbits (14) reads: 

(15)    

( )
( )
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[ ]
[ ]
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⎪
⎪
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+=
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2
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2

2

2

ROGt

RORI

RORe
ROa

ω
πω
π

 

We are able now to construct a flight formation by simply choosing an arbitrary number of (15)-type 
orbits, all sharing the same value of ; in this way we get a spatial grouping of the bodies, into a flight 
formation whose relative geometry will be preserved during the motion, in the O(R

Λ
2)–approximation. 

Figure 4 presents a succession of eight intermediate positions from the motion of a 7-body flying 
formation. The values of R for the seven bodies vary in between 0 and 0.3, in order to allow visualization. 
For each freeze-frame we show: 

On the left: the image of the flying formation seen from outside the system of N+1 bodies (bodies 
are represented as differently coloured disks), together with their trajectories (the blue ellipses) 
and the motion plane of the geometrical centre (suggested through the black square and its 
normal), 

• 

• On the right: just the apparent geometry of the formation, as it appears in projection for the eyes 
of an observer placed in the attractive centre, tracking the motion of the geometrical centre C. 
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Figure 4: Arbitrary 7 bodies formation, ( )3.0,0∈iR , in 8 successive moments of a period. On the 
LHS we have a view from outside the system, on the RHS a simultaneous view from the 

attractive centre. 

Of course, during one period, the distances between bodies experience small oscillations around an 
average value. In Figure 5 we represented these relative oscillations for the six sides of a “regular 
intended” hexagon. 

To increase the precision in preserving the geometry of the flight formation one has to impose smaller 
values for R. In Figure 6 we have, this time in absolute value, the amplitude of the oscillation vs. the value 
of R, for hexagonal regular formations. 
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Figure 5: Regular 6 bodies formation, 01.0=iR . We represented, with different colours, the 
oscillations of the six sides during one period (normalized with their average). 

 

Figure 6: The absolute value of the oscillation of the sides (on the ordinate, in a 10-base 
logarithmic scale) vs. the value of R (on the abscissa, in a 10-base logarithmic scale), for 

hexagonal regular formations. 
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5.0 FINAL REMARKS 

We proved that the technique used for designing the LISA mission can be extended for arbitrary, but 
plane, flying formations. The main advantage of using this technique consists in low cost for maintaining 
the trajectories; the motion is geodesic and the orbital manoeuvres are only for eliminating the effects of 
the perturbations. Also, we remind again that there are no restrictions other than keeping a small value for 
the ratio of the mutual distances to the characteristic length of the orbits (semi-major axis for example). 

We did not discuss the problem of stability for these geodesic flying formations. First, because we do not 
have a clear definition for this and, second, because the stability of the formation (in any way you want to 
consider it) is strictly determined by the stability of the Keplerian orbits, which is a well-known subject. 
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